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Abstract—A method for penalized likelihood tomographic
reconstruction is presented which is based on a spatially adaptive
stochastic image model. The model imposes onto the image a
smoothing Gaussian prior whose parameters follow a Gamma
distribution. Three variations of the model are examined: (i) a
stationary model, where the Gamma distribution has the same
constant parameter for the entire image, (ii) a non stationary
model, where this parameter varies with respect to location and
(iii) a non stationary directional model where the parameter
varies also with respect to orientation (horizontal or vertical
direction). In all cases, the MAP criterion provides a closed form
solution for both the unknown image and the parameters of the
model. Numerical experiments showed that the reconstructions
obtained using the proposed image priors outperform the state
of the art EM based methods.

I. INTRODUCTION

Several maximum likelihood (ML) or maximum a posteriori
(MAP) iterative algorithms for reconstructing tomographic im-
ages have been proposed in the last three decades [1]. Among
them, a well-known family of methods leads to solutions
that minimize certain combinations of the Kullback-Leibler
(KL) distances between the observed photon counts and the
projected unobserved image [2]. The solution is derived from
alternating minimization of related KL distances between
convex sets.

MAP or penalized maximum likelihood tomographic recon-
struction methods impose a prior probability density function
(pdf) on the image to be reconstructed which usually aims to
encourage the image to be smooth in order to suppress the
effect of noise. This assumption is based on the knowledge
that the system (projection) matrix suppresses image detail
due to its blurring effect. Therefore, any such detail present
in the reconstruction is more probably to have arisen from
noise [3]. For instance, in [4], to avoid over-fitting to noisy
data, a penalty function was employed involving also the KL
distance between a prior estimate of the unobserved image and
the current estimate at each iteration.

A common model for the prior is the Markov random field
(MRF) expressed by the Gibbs distribution [5]. Many methods
were proposed in that framework differing on the choice of the
potential function [6], [7], [8], [9]. Among them, the Gauss
MRF (MRF) has the advantage of estimating its parameters
from the data [10]. More recently, in [11], the notion of
clustered intensity histogram is introduced in a penalized

likelihood method. The prior pdf is a mixture of Gamma
distributions enforcing positivity of the reconstructed image
intensities. An alternating optimization is performed where a
likelihood estimate is followed by inference of the mixture
model [11]. A monotonically decreasing surrogate objective
function resulting in a closed form expression is proposed in
[12] while the median root prior was also used to impose
spatial smoothness and stabilize the solution [13]. Finally, a
nonlocal prior was designed [14] where the definition of a
pixel’s neighborhood is broadened.

In this paper, we propose a sparse, edge-preserving, spatially
adaptive model for the image to be reconstructed which relies
on a two level Gaussian non-stationary prior. The prior as-
sumes that the image intensities follow a Gaussian distribution
whose variance is spatially adaptive. Thus, the strength of the
prior depends on local image statistics, leading to distinct
variances at each pixel. To avoid over-parameterization, a
Gamma hyper-prior [15] is imposed on the spatially varying
variances of the model. Model inference is obtained by a
maximum a posteriori (MAP) formulation which yields closed
form updates for the image and the spatially varying variances
of the involved distributions.

Priors similar in spirit to those proposed in this work, have
been applied to image restoration [16] and non-rigid image
registration [17]. The related model is characterized by an
intrinsic flexibility depending on the degree of detail carried
by its hyper-parameters. We follow this step-by-step decom-
position in its description. At first, the simplest version of the
model is presented, where a unique hyper-parameter controls
the variances of the pixel intensities yielding a stationary
image model. Secondly, the model is refined to capture each
pixel’s probability with a different hyper-parameter. thus, the
model becomes spatially varying or non stationary. Finally,
we employ different hyper-parameters for the horizontal and
vertical image directions at each pixel in order to make the
model more adaptive to local edge directions.

The proposed reconstruction method is successfully com-
pared to state-of-the art tomographic reconstruction algo-
rithms. Furthermore, we compared the different versions of
the model among themselves to investigate how the augmented
model complexity affects the quality of the reconstruction.

In the remaining of the paper, the proposed image model
is presented in section II, experimental results are shown in
section III and conclusions are drawn in section IV.
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II. THE IMAGE MODEL

Let f be the vectorized form of the image to be recon-
structed. Let also g be the observed projections (sinogram),
also in vectorized form and let H represent the projection
matrix. Penalized likelihood models rely on the stochastic
interpretation of Tikhonov regularization [18] by introducing
an appropriate prior p(f) for the image f . The likelihood
function p(g|f) is related to the posterior probability p(f |g)
by the Bayes rule p(f |g) ∝ p(g|f)p(f).

In tomography, the likelihood p(g|f) is a Poisson distribu-
tion assuming independence between counts

p(g|f) =
N∏
i=1

([Hf ]i)
gi exp(−[Hf ]i)

gi!
, (1)

where N is the number of projection measures, gi is the i-th
component of g and [Hf ]i is the i-th component of vector
Hf . A common approach for the likelihood is to approximate
it by a Gaussian which is considered to be valid if the mean
[Hf ]i is greater than 20 [19]. Therefore, the log-likelihood is
expressed by

log p(g|f) ≈ C(g)− 1

2
(Hf − g)TD−1(Hf − g), (2)

where C(g) collects the terms not depending on the image f

and D is the diagonal covariance matrix.
Having defined the likelihood and using an appropriate

prior, MAP estimates for the image f may be obtained by
minimizing the negative log-posterior

− log p(f |g) = − log p(g|f) − log p(f) (3)

with respect to f .

A. Stationary model

Based on the assumption that the image to be reconstructed
should be smooth, we assume that the prior for the image f

is Gaussian and emphasizes low frequency information. This
assumption may be expressed by employing a high frequency
operator represented by matrix Q. In our case, Q applies
the Laplacian operator and Qf is the vectorized form of the
Laplacian of image f . Hence, the prior for an image pixel may
be written as

p(fi) =
(α|QTQ|)1/2√

2π
exp

(
−1

2
([Qf ]i)

Tα([Qf ]i)

)
, (4)

where [Qf ]i is the Laplacian of the image at the i-th pixel.
Considering the pixels to be independent, we come up with
the probability for the entire image p(f) =

∏N
i=1 p(fi) which

is given by

p(f) =
(α|QTQ|)N/2

(2π)N/2
exp

(
−1

2
α(Qf )T (Qf)

)
, (5)

The above zero-mean normal distribution assigns a high
probability to images not exhibiting rich edge information.
Parameter α controls the precision matrix QTQ (inverse
covariance) and consequently the shape of the distribution (it is
generally called hyper-parameter). The simplest approach is to

consider parameter α spatially constant, yielding a stationary
model for the whole image. This implies that the statistics
for Qf are Gaussian, independent and identically distributed.
Applying the prior in (5) to the MAP expression (3) and
minimizing it with respect to f provides a linear system with
unknowns the elements of the image f :

(HTD−1H+ αQTQ)f = HTD−1g (6)

This is also the solution to the standard weighted least squares
problem:

argmin
f

{||Qf ||2} subject to D−

1

2Hf = D−

1

2g. (7)

However, in the least squares approach, parameter α has to
be determined empirically while in the MAP methodology
developed here this parameter is naturally estimated from the
data. This is obtained by maximizing (3) with respect to α,
thus obtaining:

α =
N − 1

||Qf ||2 (8)

The linear system in (6) may be solved iteratively using the
conjugate gradient method. At each iteration the precision
parameter α is also updated by eq. (8). Notice that the term
HTD−1H represents a projection operation (represented by
matrix H), followed by a multiplication by the diagonal matrix
D−1, followed by a backprojection operation (represented
by matrix HT ). Also, the operator QTQ may be effectively
computed in the Fourier domain.

B. Non stationary model

In order to make the model more flexible we impose
spatial adaptivity. In other words, the precision parameter of
the model depends now on the pixel location and we have
one precision parameter for each pixel. The pixel prior now
becomes

p(fi) =
(αi|QTQ|)1/2√

2π
exp

(
−1

2
([Qf ]i)

Tαi([Qf ]i)

)
, (9)

where we have introduced the spatially varying parameter αi,
i = 1, ..., N . Hence, the probability for the entire image is
expressed by

p(f) =
(|QTQ|)N/2

(2π)N/2

N∏
i=1

α
1/2
i exp

(
−1

2
(Qf)TA(Qf )

)
,

(10)
where A = diag{α1, α2, ..., αN} is a N ×N diagonal matrix.
Let us also notice that this prior is proper since it integrates
to 1.

The drawback of this prior is that it introducesN parameters
αi that have to be estimated and data overfitting may occur.
Thus, we follow the Bayesian paradigm [20] and add one
more layer to our model and consider αi, i = 1, ..., N , as
random variables and introduce a Gamma hyper-prior for
them. The Gamma distribution is a natural choice for the
model parameters because it is conjugate to the Gaussian
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distribution, thus, facilitating model inference. We consider
the following parametrization of the Gamma distribution [15]:

p(αi) ∝ (αi)
(l−2)/2 exp (−m(l− 2)αi) (11)

Following this parametrization, the mean and variance of
Gamma, are given by E[αi] = l (2m(l − 2))

−1 and
V ar[αi] = l

(
2m2(l − 2)2

)
−1

. We employ this parametriza-
tion because the value of parameter l may be interpreted
as the level of confidence to the prior knowledge provided
by the Gamma hyper-prior. More specifically, as l → ∞,
E[αi] → (2m)−1 and V ar[αi] → 0. This means that the
prior becomes very informative and restrictive resulting in
αi = (2m)−1, ∀i yielding a stationary image model. On the
other hand, as l → 2, then E[αi] → ∞ and V ar[αi] → ∞ and
the prior becomes uninformative and does not play any role in
the determination of the values of αi. In that case, the model
becomes highly non stationary. In other words, parameter l

controls the degree of non stationarity of the image model.
Minimizing the MAP expression (3) with respect to f this

time leads to the following linear system of equations:

(HTD−1H+QTAQ)f = HTD−1g (12)

Moreover, minimization with respect to the spatially varying
parameters αi, ∀i provides the following update:

αi =
l − 1

[Qf ]2i + 2m(l − 2)
(13)

The role of the Gamma pdf becomes apparent by observing
the above equation. For example, when the image f is smooth
the first term in the denominator of (13) becomes zero. Thus,
without the Gamma pdf (m = 0 and l = 2) the estimates for
αi become unstable. Parameter l may take values within the
interval (2,+∞). Its choice affects our model in the following
way. When l is very close to 2, the second term in the
denominator ensures that αi depends only on [Qf ]2i and thus
the Gamma hyper-prior is non-informative since the estimates
of αi depend only on the data. On the other hand, if we assign
a large values to l, the second term in the denominator of (13)
dominates. Then, the estimates of αi do not depend on the
data and have the same value for all spatial locations. As a
result, our model degenerates to a spatially invariant model.
Parameter m is extracted from the data, since it turns out that
it is proportional to the variance of Qf [15].

C. Non stationary directional model

We now present a more flexible form of the previously
presented image models which imposes a distinct prior to each
image direction (horizontal, vertical and two diagonals) for a
given pixel. However, as we will see, the corresponding prior
is improper.

We assume that the first order differences of the image f in
matrix vector form are given by εk = Qkf , for k = 1, 2, 3, 4,
in four directions respectively, where Qk is now the directional
difference operator. Gaussian statistics are assumed for the
local differences εki ∼ N (0, (αk

i )
−1) with a spatially varying

set of parameters Ak = diag{αk
1 , α

k
2 , ..., α

k
N} for each image

direction k. The whole set of variables may be represented
by the 4N × 4N matrix Ã = diag{A1,A2,A3,A4} and
the pdf of the differences ε = [ε1, ε2, ε3, ε4]T , where ε

k =
[εk1 , ε

k
2 , ..., ε

k
N ]T is expressed by

p(ε̃) ∝
4∏

k=1

N∏
i=1

(
αk
i

)1/2
exp

(
−1

2

(
ε̃
T Ãε̃

))
(14)

which assumes independence between locations as well
as between directions at each location. To relate ε̃ with
the image f , we define the 4N × N operator Q̃ =
diag{(Q1)T , (Q2)T , (Q3)T , (Q4)T }. Then, the relation be-
tween the image and the directional differences is ε̃ = Q̃f

and the corresponding image prior is given by

p(f) ∝
4∏

k=1

N∏
i=1

(
αk
i

)1/8
exp

(
−1

2

(
Q̃f

)T

Ã
(
Q̃f

))
(15)

The above prior is improper since it is not scaled to integrate
to 1 because its normalizing constant depends on the non-
square matrix Q̃ and the corresponding determinant cannot be
obtained analytically as a matrix product (see [16] for more
details).

To complete the model in a Bayesian sense, in order to avoid
overfitting, we impose a Gamma hyper-prior to the spatially
varying parameters at each direction with the corresponding
pdfs being of the form

p(αk
i ) ∝ (αk

i )
(lk−2)/2 exp

(−mk(lk − 2)αk
i

)
(16)

where we have four distinct Gamma priors parameterized
by the pairs (mk, lk), for each direction k = 1, 2, 3, 4. To
summarize, this non stationary directional image model may
be viewed as an improper generalization of both the stationary
and the non stationary models presented above.

Substituting the image prior in (15) to the expression in (3)
and maximizing it with respect to f , we obtain[

HTD−1H+
4∑

k=1

(
Qk

)T
AkQk

]
f = HTD−1g (17)

Similarly, maximization of (3) with respect to the spatially
varying and directional parameters αk

i gives the following
update

αk
i =

1
8 + 1

2 (lk − 2)
1
2 (ε

k
i )

2 +mk(lk − 2)
(18)

III. RESULTS

The performances of the proposed image models were
examined using the well known Shepp-Logan phantom. The
compared methods were evaluated in terms of the improve-
ment in signal to noise ratio (ISNR) with respect to a recon-
struction obtained by a simple filtered back-projection using
the Ram-Lak filter:

ISNR = 10 log10
||f − fFBP ||2
||f − f̂ ||2 (19)

where f is the ground truth image, fFBP is the reconstructed
image by filtered back-projection and f̂ is the reconstructed
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image using the proposed image model. Practically, ISNR
measures the improvement (or deterioration) in the quality
of the reconstruction of the proposed method with respect to
the reconstruction obtained by filtered back-projection. To this
end, degraded images were generated from the initial image
by modifying the total photon counts in order to simulate a
Poisson distribution. More specifically, the total photon counts
in a 256× 256 image of the phantom varied between 5× 106

and 5×108 which corresponds, on average, to a range between
100 and 10000 photons per pixel. In all of the experiments
we have set the hyper-parameter of the Gamma distribution
l = 2.01.
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Fig. 1. ISNR comparative curves between (a) the three versions of the
proposed model and (b) the non stationary directional model (10), the MAP-
EM algorithm [6] and the MAP-EM with median prior algorithm (MAP-EM-
median) [13]. The test image is the 256 × 256 Shepp-Logan phantom.

In figure 1(a), the three image models are compared. The
points on the curves represent the average ISNR for each noise
level (total photon counts) computed by 40 random realizations
of the experiment. As it can be observed, as the noise increases
(the number of photon counts per pixel decreases) the ISNR
becomes larger. This means that the improvement with respect
to the filtered back-projection reconstruction increases. The
simpler stationary model has consistently lower ISNR val-

ues compared to the non stationary versions of the method.
However, the differences are relatively small (0.1 to 0.25 dB).
The non stationary methods have similar results and their
differences are practically insignificant. This behavior may
be explained by the general piecewise smooth form of the
phantom image and emission tomography images in general.
The model complexity added by the directional prior may
overfit image data with Poisson statistics. This prior may be
appropriate for image restoration problems (e.g. [16]) where
blurring, Gaussian noise and image content may increase the
problem’s complexity. Nevertheless, in the majority of the
cases in fig. 1(a) the no stationary directional model is slighltly
superior.

Using the same experimental framework, the proposed mod-
els were also compared to established reconstruction methods
such as the MAP-EM algorithm [6] and the robust MAP-
EM with median prior algorithm (MAP-EM-median) [13]. The
results are summarized in figure 1(b) where only the non sta-
tionary directional model is shown for clarity of presentation
purposes (this is the same curve with fig. 1(a)). As it can be
seen, the proposed model provides largely better ISNR values
than the other MAP-based algorithms. The difference is more
pronounced in low SNR (low number of total counts) and
becomes smaller as the image becomes less degraded.

In order to compare the statistical properties of the proposed
MAP methods, we also considered the bias (BIAS) and the
variance (VAR) of the reconstructed images. These quantities
are estimated through Monte-Carlo simulations by the follow-
ing expressions:

BIAS = ||f − f̄ ||, VAR =

M∑
k=1

||f̄ − f̂k||2,

with f̄ = 1
M

∑M
k=1 f̂k, where f is the ground truth image

and f̂k, for k = 1, ...,M , is the k-th reconstructed image,
obtained from M different experiments. For each noise level,
the degraded images were corrupted with M = 40 different
noise realizations. The results are summarized in figure 2. The
bias (fig. 2(a)), measuring the distance of the mean estimated
image from the ground truth, is approximately constant for all
the versions of the model. However, the simpler, stationary
version provides consistently a higher bias value with respect
to the non stationary variants as it was the case for the ISNR
values. To highlight the small order of magnitude of the values
of the bias, let us notice, that, these values concern all the
image pixels as they are computed by (III). To obtain an idea
of the per pixel bias, these values should be divided by 2562.

The variances of the three versions of the proposed model,
shown in figure 2(b)), decrease as the total counts increase.
Moreover, for low photon counts, the differences between
the stationary and the non stationary variants of the model
are more pronounced. These differences disappear as the
photon counts increase. Notice also that the variance values
correspond to the whole image and divided by 2562 provide
the order of magnitude per pixel.
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Fig. 2. (a) Bias and (b) variance comparative curves between the three
versions of the proposed model. The test image is the 256 × 256 Shepp-
Logan phantom.

IV. CONCLUSION

We have presented a MAP methodology for tomographic
image reconstruction using a family of stochastic image priors
which gradually refine the image model from stationary to
non stationary. The proposed approach is favorably compared
to established EM-based reconstruction methods. Moreover,
numerical experiments showed that the non stationary versions
of the model are consistently superior with respect to the
stationary version. Between them, the non stationary methods
do not exhibit significant differences due to the piecewise
smooth nature of tomographic images.

Many tomographic reconstruction algorithms employ the
linearization in (2) in order to facilitate the integration of
image priors into the problem. Although this approximation
is generally admissible and valid, a perspective of this work
is to integrate the image priors (5), (10) and (15) directly
into an Expectation-Maximization (EM) framework for image

reconstruction without using eq. (2). By these means, matrix
inversions involved in (6), (12) and (17) which are now
handled by the conjugate gradient method would be avoided.
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